Carbon-selenium bond cleavage in the double butterfly complex $\left[\left((\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right\}_{2}[\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{H})\}\right]$ and the synthesis and X -ray structural analysis of its dppe-substituted derivative

Pradeep Mathur and Md. Munkir Hossain
Chemistry Department, Indian Institute of Technology, Powai, Bombay 400076 (India)

Mary F. Mahon
School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (UK)

(Received October 7, 1993)

Abstract

At room temperature, the double butterfly complex $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right]_{2}(\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{H})] \text { reacted with } \mathrm{Pt}^{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right.} \mathrm{XPPh}_{3}\right)_{2}$ to give $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SeC}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Se})\right],\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{Pt}^{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mu-\mathrm{SeC}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Se})\right]$ and $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. It reacted with dppe to form the substituted derivative $\left[(\mathcal{C O})_{5} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right\}_{2} \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{H})(\mu$-dppe $\left.)\right]$, which was subjected to an X -ray diffraction analysis. The crystal of $\left[f(\mathrm{CO})_{5} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right\}_{2} \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{H})(\mu$-dppe $\left.)\right]$ is triclinic with the space group $P \overline{1}, a=12.969(1), b=13.032(1), c=$ 18.669(1) $\AA, \alpha=76.81(1), \beta=72.74(1), \gamma=63.99(1)^{\circ}, Z=2$. The structure was refined by the block-matrix least squares method. The final R and R_{w} values were 0.0435 and 0.0492 respectively.

Key words: Iron; Selenium; X-ray diffraction

1. Introduction

Transition metal-alkyne complexes continue to attract attention in view of the potential of the coordinated alkyne to be transformed into useful organic species [1]. In recent years, complexes containing ligands other than the traditional carbonyl and cyclopentadienyl ligands, such as alkoxide, siloxide, aryloxide and related oxygen donor ligands as supporting groups have been examined in the context of alkyne activation and metathesis reactions [2]. The heavier group 16 elements have also been used in cluster growth reactions, and an important starting material for such reactions has been the class of compounds, $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{E}_{2}\right)$ where $\mathrm{E}=\mathrm{Se}$ or Te [3]. The characteristic chemistry of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)$ is dominated by the presence of a reactive $\mathrm{Se}-\mathrm{Se}$ bond and this property has been ex-

[^0]ploited for the addition of numerous types of coordinatively unsaturated metal species. Recently, phenylacetylene was found to readily add across the $\mathrm{Se}-\mathrm{Se}$ bond of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)$ and the stepwise reduction of the acetylenic triple bond to a single bond on the $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{Se}_{2}$ framework was demonstrated [4]. The addition of a $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ group to the coordinated phenylacetylenc in [(CO) $\left.{ }_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SeC}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Se})\right]$ has also been reported [5]. Here we report a facile $\mathrm{Se}-\mathrm{C}$ bond cleavage in $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right\}_{2}(\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{H})]\right.$ and the synthesis and X-ray structural analysis of the dppe-substituted derivative of the double-butterfly complex $\left[\left\{(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right\}_{2}(\mathrm{C}(\mathrm{Ph})-\mathrm{C}(\mathrm{H})](1)\right.$.

2. Results and discussion

Compound 1 was obtained in 14% yield from the reaction of phenylacetylene with $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)$ at room temperature. This compound has previously been prepared by the reaction of $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SeC}(\mathrm{Ph}) \mathrm{C}-\right.$

Scheme 1.
(H)Se)] (2) with $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)$, and has been structurally characterised by single crystal X-ray diffraction analysis [4]. When a benzene solution containing 1 and $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ was stirred at room temperature, the following compounds were formed and isolated: $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}(\mu-\mathrm{SeC}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Se})\right] \quad$ (2), $\quad\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2} \mathrm{Pt}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\{\mu-\mathrm{SeC}(\mathrm{Ph}) \mathrm{C}(\mathrm{H}) \mathrm{Se})\right]$ (3) and $\left[(\mathrm{CO})_{6} \mathrm{Fe}_{2}\left(\mu_{3}-\right.\right.$ $\mathrm{Se})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ (4) (Scheme 1). Compounds $2-4$ were identified on the basis of comparison of their IR and NMR spectroscopic data with that reported earlier [4, 6]. Although the mechanistic details have not yet been established, the formation of these three products formally involves the scission of a pair of $\mathrm{C}-\mathrm{Se}$ bonds to form $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{Se}_{2}$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{Se}_{2} \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{H})$ units. The coordinatively unsaturated $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ groups then add to these two units to form compound 4 and compound 3 respectively. The scission of the $\mathrm{C}-\mathrm{Se}$ bonds is accompanied by the $\mathrm{C}-\mathrm{C}$ single bond becoming a double bond in the coordinated $\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{H})$ group.

When a solution containing compound 1 and dppe was stirred in the presence of trimethylamine oxide, a

Scheme 2.
single product was formed (see Scheme 2). It was isolated and characterised as $\left[\left\{(\mathrm{CO})_{5} \mathrm{Fe}_{2}(\mu-\mathrm{Se})_{2}\right)_{2} \mathrm{C}\right.$ (Ph) $\mathrm{C}(\mathrm{H})(\mu$-dppe)] (5). Compound 5 was characterised by IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectroscopy. The IR spectrum of 5 in the carbonyl region shows five bands between 2067 and $1912 \mathrm{~cm}^{-1}$, indicating the presence of only terminally bonded carbonyl groups. The frequencies of the bands are lower than the frequencies of the bands observed in the parent compound 1 ($2076-2002 \mathrm{~cm}^{-1}$), consistent with the replacement of carbonyl groups by stronger donor and weaker π acceptor ligand. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of 5 confirm the presence of the dppe ligand. Suitable crystals of 5 were grown and an X-ray structural analysis was undertaken. An ortep drawing of the molecular structure of 5 is shown in Fig. 1. The structure of 5 can be described as consisting of two $\mathrm{Fe}_{2} \mathrm{Se}_{2}$ butterfly units attached to each other by means of a phenylacetylene molecule, which is bonded to all the Se atoms. A dppe group is attached to one Fe atom of each $\mathrm{Fe}_{2} \mathrm{Se}_{2}$ unit. The Fe atoms associated with the dppe group have two terminal carbonyl groups bonded to them each while the remaining two Fe atoms have three terminal groups bonded to each of them. Essentially, the heavy atom core of 5 is similar to that of 1. The $\mathrm{Fe}-\mathrm{Fe}$ bond distances in 1 and 5 are similar (in 1 the average $\mathrm{Fe}-\mathrm{Fe}$ bond length is $2.527(2) \AA$, while in 1 the two $\mathrm{Fe}-\mathrm{Fe}$ bond lengths are 2.527(2) and $2.530(4)$ \AA). The average $\mathrm{Fe}-\mathrm{Se}$ bond distance in $5(2.394 \AA)$ is somewhat longer than the average $\mathrm{Fe}-\mathrm{Se}$ distance in 1 ($2.368 \AA$). It is of interest to note that each Fe atom associated with dppe forms longer bonds to one of the two Se atoms with which it is bonded ($\mathrm{Fe}(1)-\mathrm{Se}(1)$

Fig. 1.
$2.416(1) \AA, \quad \mathrm{Fe}(1)-\mathrm{Se}(2) \quad 2.368(2) \AA \mathrm{A}, \mathrm{Fe}(3)-\mathrm{Se}(3)$ $2.413(2) \AA, \mathrm{Fe}(3)-\mathrm{Se}(4) 2.348(1) \AA)$. The remaining two Fe atoms form bonds of almost equal length to the Se atoms ($\mathrm{Se}(4)-\mathrm{Fe}(4) 2.393(2), \mathrm{Se}(1)-\mathrm{Fe}(2) 2.403(2) \AA$). The $\mathrm{Se}(1)-\mathrm{C}(12)-\mathrm{Se}(4)$ and the $\mathrm{Se}(2)-\mathrm{C}(11)-\mathrm{Se}(3)$ angles in $5\left(113.9(5)^{\circ}\right.$ and $\left.112.7(3)^{\circ}\right)$ are longer than the corresponding angles in the parent molecule, 1
(106.0(3) ${ }^{\circ}$ and $\left.109.5(4)^{\circ}\right)$. The presence of dppe leads to a tilting of the two $\mathrm{Fe}_{2} \mathrm{Se}_{2}$ butterfly units such that the wing tip atoms $\mathrm{Fe}(1)$ and $\mathrm{Fe}(3)$ move apart and the $\mathrm{Fe}(2)$ and $\mathrm{Fe}(4)$ move closer together. This results in an increase in the $\mathrm{Se}(1)-\mathrm{C}(12)-\mathrm{Se}(4)$ and $\mathrm{Se}(2)-$ $\mathrm{C}(11)-\mathrm{Se}(3)$ angies. Also, due to the increased proximity of the two $\mathrm{Fe}(\mathrm{CO})_{3}$ groups, one of the metal car-

TABLE 1. Fractional atomic coordinates and thermal parameters (A)

Atom	x	y	z	$U_{\text {iso }}$ or $U_{\text {eq }}$	*
Sel	0.16332(7)	0.41118(7)	0.14313(4)	0.0352(5)	*
Se2	$0.16864(8)$	$0.59127(7)$	0.22131(5)	0.0404(5)	*
Se3	-0.00758(8)	0.49152(7)	$0.35868(5)$	0.0374(5)	*
Se4	$0.10654(8)$	$0.25087(7)$	$0.30851(5)$	$0.0382(5)$	*
Fel	0.07052(11)	0.61854(10)	0.12549 (6)	0.0357(7)	*
Fe 2	$0.29139(11)$	$0.51194(11)$	$0.10522(7)$	$0.0410(7)$	
Fe3	-0.09366(11)	0.36404(10)	$0.35211(7)$	0.0383(7)	*
Fe4	0.05424(12)	0.30730(11)	$0.43202(7)$	0.0434(8)	*
P1	-0.1203(2)	0.7103(2)	$0.1775(1)$	0.036(1)	*
P2	-0.1833(2)	0.3976(2)	0.2583(1)	0.035(1)	*
O1	0.0279(7)	0.6015(6)	-0.0151(4)	0.080(5)	*
O2	0.1027(6)	0.8302(5)	$0.0620(4)$	0.064(5)	*
O3	0.3270(7)	0.4759(8)	-0.0500(4)	0.093(6)	
O4	$0.3771(7)$	0.6949(7)	$0.0617(5)$	0.092(6)	*
O5	0.5285(6)	0.3444(7)	0.1183(4)	0.077(5)	
O6	-0.3037(7)	$0.5127(7)$	$0.4503(4)$	0.090(6)	*
07	-0.1339(8)	$0.1552(7)$	0.4104(5)	0.110(7)	*
O8	-0.1239(7)	0.3962(8)	0.5673(4)	0.096(6)	
O9	0.0857(9)	$0.0706(7)$	$0.4948(5)$	$0.120(7)$	*
O10	0.2577(7)	$0.3065(8)$	$0.4710(4)$	$0.101(6)$	
011	0.45370	0.75310	0.40970	0.175(12)	
C45	0.39450	0.98130	0.41375	0.167(17)	
C46	0.38150	0.87160	0.43250	$0.365(50)$	
C47	0.43800	0.87340	0.49660	0.205(20)	
C48	0.14400	0.91460	0.35250	$0.139(14)$	
C49	0.18910	0.85310	0.29940	0.271(32)	
O12	0.24020	0.87600	0.20344	$0.185(14)$	
C50	0.29910	0.91230	0.21660	0.403(51)	
C51	0.42840	0.84730	0.18310	$0.343(40)$	
C1	0.0429(8)	0.6085(8)	0.0403(5)	0.050(2)	
C2	0.0885(8)	0.7498(8)	0.0873(5)	0.045(2)	
C3	0.3135(9)	0.4925(9)	$0.0110(6)$	0.061(3)	
C4	0.3431(9)	$0.6250(9)$	$0.0795(6)$	0.058(3)	
C5	0.4343(9)	0.4051(8)	$0.1191(5)$	0.056(2)	
C6	-0.2210(9)	0.4549(9)	0.4104(6)	0.059(3)	
C7	-0.1190(9)	0.2383(9)	0.3880(6)	0.060(3)	
C8	-0.0543(9)	0.3627(8)	0.5150(6)	0.056(2)	
C9	0.0749(9)	$0.1630(9)$	0.4707(6)	0.063(3)	
C10	$0.1812(10)$	0.3063(9)	0.4551(6)	0.061(3)	
C11	$0.1524(7)$	0.4542(6)	0.2894(4)	0.036(2)	
C12	$0.1901(7)$	0.3527(7)	$0.2497(4)$	0.036(2)	
C14	$0.3916(5)$	0.2709(5)	0.2840(3)	0.053(2)	
C15	0.5058(5)	$0.1870(5)$	0.2802(3)	0.070(3)	
C16	0.5484(5)	0.0985(5)	$0.2353(3)$	0.079(3)	
C17	0.4768(5)	$0.0938(5)$	0.1942(3)	0.069(3)	
C18	$0.3627(5)$	$0.1777(5)$	$0.1980(3)$	0.060(3)	
C13	0.3201(5)	0.2663(5)	0.2429(3)	0.042(2)	
C20	-0.2527(5)	0.8120(5)	$0.3120(4)$	0.065(3)	
C21	-0.2812(5)	0.8847(5)	$0.3657(4)$	0.078(3)	
C22	-0.2140(5)	0.9474(5)	$0.3582(4)$	0.078(3)	
C23	-0.1184(5)	$0.9373(5)$	$0.2970(4)$	0.084(4)	
C24	-0.0899(5)	0.8646(5)	0.2433(4)	0.074(3)	
C19	-0.1571(5)	0.8020(5)	$0.2508(4)$	0.041(2)	
C26	-0.2084(5)	0.9208(5)	0.0875(3)	0.050(2)	
C27	-0.2696(5)	0.9945(5)	0.0332(3)	0.065(3)	
C28	-0.3257(5)	0.9565(5)	-0.0018(3)	0.065(3)	
C29	-0.3206(5)	0.8448(5)	$0.0176(3)$	0.080(3)	
C30	-0.2594(5)	$0.7710(5)$	0.0719(3)	0.067(3)	
C25	-0.2033(5)	$0.8090(5)$	$0.1069(3)$	0.041(2)	
C31	-0.2073(7)	$0.6236(7)$	$0.2229(4)$	0.041(2)	
C32	-0.1666(7)	0.5131(7)	$0.1874(4)$	0.038(2)	

TABLE 1 (continued)

Atom	x	y	z	$U_{\text {iso }}$ or $U_{\text {eq }}$	($\left.^{*}\right)$
C34	$-0.2223(4)$	$0.2639(5)$	$0.1788(3)$	$0.064(3)$	
C35	$-0.1861(4)$	$0.1814(5)$	$0.1303(3)$	$0.080(3)$	
C36	$-0.0664(4)$	$0.1180(5)$	$0.1036(3)$	$0.060(3)$	
C37	$0.0172(4)$	$0.1370(5)$	$0.1254(3)$	$0.063(3)$	
C38	$-0.0190(4)$	$0.2195(5)$	$0.1739(3)$	$0.059(3)$	
C33	$-0.1388(4)$	$0.2830(5)$	$0.2006(3)$	$0.036(2)$	
C40	$-0.4177(6)$	$0.5282(5)$	$0.2444(3)$	$0.060(3)$	
C41	$-0.5396(6)$	$0.5634(5)$	$0.2684(3)$	$0.079(3)$	
C42	$-0.5878(6)$	$0.5125(5)$	$0.3362(3)$	$0.090(4)$	
C43	$-0.5142(6)$	$0.4263(5)$	$0.3801(3)$	$0.081(3)$	
C44	$-0.3924(6)$	$0.3910(5)$	$0.3561(3)$	$0.066(3)$	
C39	$-0.3441(6)$	$0.4420(5)$	$0.2883(3)$	$0.049(2)$	

bonyl bonds becomes slightly bent ($\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(5)$ $\left.170.7(9)^{\circ}\right)$. The carbon-carbon bond of the bridging $\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{H})$ unit remains unchanged as a result of dppe substitution.

3. Experimental details

Reactions and manipulations were carried out under an inert atmosphere of argon by means of standard Schlenk techniques. Solvents were deoxygenated immediately prior to use. $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)$ was prepared as reported earlier [4]. Infrared spectra were recorded on a Nicolet 5DXB FT spectrometer as dichloromethane solutions in 0.1 mm pathlength NaCl cells. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian XL-300 spectrometer with chemical shifts reported in ppm referenced to $\mathrm{SiMe}_{4} \cdot{ }^{31} \mathrm{P}$ NMR spectra were recorded on a Varian FT-80A spectrometer at 32.2 MHz with chemical shifts reported in ppm referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}$.

3.1. Preparation of 1

To a solution of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)(1.14 \mathrm{mmol})$ in methanol (25 ml) was added phenylacetylene $(0.15 \mathrm{~g}$, 1.5 mmol) and solid anhydrous sodium acetate (0.5 g). The mixture was stirred at room temperature for 48 h . The solvent was evaporated and the mixture was redissolved in dichloromethane. The solution was filtered through Celite to remove insoluble impurities and chromatographic work-up in a silica gel column using a $40 / 60$ dichloromethane/petroleum ether mixture as eluent yielded the following two compounds in order of elution $2(0.14 \mathrm{~g}, 23 \%)$ and $1(0.08 \mathrm{~g}, 14 \%)$.

3.2. Reaction of 1 with $\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$

To a solution of $1(0.04 \mathrm{~g}, 0.04 \mathrm{mmol})$ in benzene (50 ml) was added solid $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}(0.06 \mathrm{~g}, 0.08$ mmol) and the mixture was stirred at room temperature for 7 h . Evaporation of the solvent and chromatographic work-up on silica gel TLC plates using 20/80
dichloromethane/petroleum ether gave the following compounds in order of elution: $\mathbf{2 (3 . 7 \mathrm { mg } , \mathbf { 1 7 \% }) , \mathbf { 3 } \text { (} 2 . 6}$ $\mathrm{mg}, 5 \%$) and 4 ($20.9 \mathrm{mg} 22 \%$).

3.3. Preparation of 5

To a solution of $1(0.1 \mathrm{~g}, 0.1 \mathrm{mmol})$ and dppe ($0.08 \mathrm{~g}, 0.2 \mathrm{mmol}$) in dichloromethane (100 ml) was added dropwise a solution of N -trimethylamineoxide ($0.015 \mathrm{~g}, 0.2 \mathrm{mmol}$) in dichloromethane (2 ml). The mixture was stirred at room temperature for 12 h . Evaporation of the solvent and chromatographic workup on a silica gel column using a $50 / 50$ dichloromethane / petroleum ether mixture as eluent yielded a single violet band of compound $5(0.01 \mathrm{~g}, 12 \%) \mathrm{Mp}$:

TABLE 2. Bond lengths (A)

$\mathrm{Se} 1-\mathrm{Fe} 1$	$2.416(1)$	$\mathrm{Se} 1-\mathrm{Fe} 2$	$2.403(2)$
$\mathrm{Se} 1-\mathrm{C} 12$	$2.036(8)$	$\mathrm{Se} 2-\mathrm{Fe} 1$	$2.368(2)$
$\mathrm{Se} 2-\mathrm{Fe} 2$	$2.415(1)$	$\mathrm{Se} 2-\mathrm{C} 11$	$1.997(8)$
$\mathrm{Se} 3-\mathrm{Fe} 3$	$2.413(2)$	$\mathrm{Se} 3-\mathrm{Fe} 4$	$2.397(1)$
$\mathrm{Se} 3-\mathrm{C} 11$	$2.006(8)$	$\mathrm{Se} 4-\mathrm{Fe} 3$	$2.348(1)$
$\mathrm{Se} 4-\mathrm{Fe} 4$	$2.393(2)$	$\mathrm{Se} 4-\mathrm{C} 12$	$2.008(9)$
$\mathrm{Fe} 1-\mathrm{Fe} 2$	$2.527(2)$	$\mathrm{Fe} 1-\mathrm{P} 1$	$2.237(2)$
$\mathrm{Fe} 1-\mathrm{C} 1$	$1.775(12)$	$\mathrm{Fe} 1-\mathrm{C} 2$	$1.784(11)$
$\mathrm{Fe} 2-\mathrm{C} 3$	$1.755(12)$	$\mathrm{Fe} 2-\mathrm{C} 4$	$1.790(13)$
$\mathrm{Fe} 2-\mathrm{C} 5$	$1.817(10)$	$\mathrm{Fe} 3-\mathrm{Fe} 4$	$2.530(2)$
$\mathrm{Fe} 3-\mathrm{P} 2$	$2.241(3)$	$\mathrm{Fe} 3-\mathrm{C} 6$	$1.767(9)$
$\mathrm{Fe} 3-\mathrm{C} 7$	$1.756(13)$	$\mathrm{Fe} 4-\mathrm{C} 8$	$1.796(9)$
$\mathrm{Fe} 4-\mathrm{C} 9$	$1.784(11)$	$\mathrm{Fe} 4-\mathrm{C} 10$	$1.816(15)$
$\mathrm{P} 1-\mathrm{C} 19$	$1.841(8)$	$\mathrm{P} 1-\mathrm{C} 25$	$1.845(6)$
$\mathrm{P} 1-\mathrm{C} 31$	$1.838(10)$	$\mathrm{P} 2-\mathrm{C} 32$	$1.808(8)$
$\mathrm{P} 2-\mathrm{C} 33$	$1.826(7)$	$\mathrm{P} 2-\mathrm{C} 39$	$1.842(7)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.138(14)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.116(13)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.156(15)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.123(16)$
$\mathrm{O} 5-\mathrm{C} 5$	$1.124(12)$	$\mathrm{O} 6-\mathrm{C} 6$	$1.160(11)$
$\mathrm{O} 7-\mathrm{C} 7$	$1.145(16)$	$\mathrm{O} 8-\mathrm{C} 8$	$1.133(11)$
$\mathrm{O} 9-\mathrm{C} 9$	$1.147(14)$	$\mathrm{O} 10-\mathrm{C} 10$	$1.118(18)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.485(13)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.549(9)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.395(7)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.395(11)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.395(9)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.395(11)$
$\mathrm{C} 17-\mathrm{C} 18$	$1.395(7)$	$\mathrm{C} 18-\mathrm{C} 13$	$1.395(9)$
$\mathrm{C} 20-\mathrm{C} 21$	$1.395(11)$	$\mathrm{C} 20-\mathrm{C} 19$	$1.395(8)$
$\mathrm{C} 21-\mathrm{C} 22$	$1.395(12)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.395(8)$
$\mathrm{C} 23-\mathrm{C} 24$	$1.395(11)$	$\mathrm{C} 24-\mathrm{C} 19$	$1.395(12)$
$\mathrm{C} 26-\mathrm{C} 27$	$1.395(8)$	$\mathrm{C} 26-\mathrm{C} 25$	$1.395(9)$
$\mathrm{C} 27-\mathrm{C} 28$	$1.395(12)$	$\mathrm{C} 28-\mathrm{C} 29$	$1.395(9)$
$\mathrm{C} 29-\mathrm{C} 30$	$1.395(8)$	$\mathrm{C} 30-\mathrm{C} 25$	$1.395(12)$
$\mathrm{C} 31-\mathrm{C} 32$	$1.535(13)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.395(10)$
$\mathrm{C} 34-\mathrm{C} 33$	$1.395(10)$	$\mathrm{C} 35-\mathrm{C} 36$	$1.395(6)$
$\mathrm{C} 36-\mathrm{C} 37$	$1.395(10)$	$\mathrm{C} 37-\mathrm{C} 38$	$1.395(10)$
$\mathrm{C} 38-\mathrm{C} 33$	$1.395(6)$	$\mathrm{C} 40-\mathrm{C} 41$	$1.395(9)$
$\mathrm{C} 40-\mathrm{C} 39$	$1.395(8)$	$\mathrm{C} 41-\mathrm{C} 42$	$1.395(8)$
$\mathrm{C} 42-\mathrm{C} 43$	$1.395(8)$	$\mathrm{C} 43-\mathrm{C} 44$	$1.395(9)$
$\mathrm{C} 44-\mathrm{C} 39$	$1.395(8)$	$\mathrm{O} 11-\mathrm{C} 46$	$1.496(1)$
$\mathrm{C} 45-\mathrm{C} 46$	$1.464(1)$	$\mathrm{C} 45-\mathrm{C} 47$	$1.875(1)$
$\mathrm{C} 46-\mathrm{C} 47$	$1.587(1)$	$\mathrm{C} 48-\mathrm{C} 49$	$1.255(1)$
$\mathrm{C} 49-\mathrm{O} 12$	$1.721(1)$	$\mathrm{C} 49-\mathrm{C} 50$	$2.033(1)$
$\mathrm{O} 12-\mathrm{C} 50$	$1.161(1)$	$\mathrm{C} 50-\mathrm{C} 51$	$1.515(1)$

TABLE 3. Bond angles (${ }^{\circ}$)

Fe1-Se1-Se2	49.4(1)	Fe2-Se1-Se2	50.6(1)
Fe2-Se1-Fe1	63.3(1)	C12-Se1-Se2	66.6(3)
C12-Se1-Fe1	111.2(2)	C12-Se1-Fe2	96.6(3)
Fe1-Se2-Se1	50.8(1)	Fe2-Se2-Se1	50.3(1)
$\mathrm{Fe} 2-\mathrm{Se} 2-\mathrm{Fe} 1$	63.8(1)	C11-Se2-Se1	64.9(3)
C11-Se2-Fe1	104.9(3)	C11-Se2-Fe2	102.9(2)
Fe3-Se3-Se4	49.1(1)	Fe4-Se3-Se4	50.3(1)
Fe4-Se3-Fe3	63.5(1)	C11-Se3-Se4	65.7(3)
C11-Se3-Fe3	111.4(3)	C11-Se3-Fe4	92.4(2)
Fe3-Se4-Se3	51.0(1)	Fe4-Se4-Se3	50.4(1)
Fe4-Se4-Fe3	64.5(1)	C12-Se4-Se3	66.6(2)
C12-Se4-Fe3	109.5(2)	C12-Se4-Fe4	100.3(3)
Se2-Fe1-Se1	79.7(1)	$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{Se} 1$	58.1(1)
$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{Se} 2$	59.0(1)	P1-Fe1-Sel	120.3(1)
P1-Fe1-Se2	104.4(1)	P1-Fe1-Fe2	163.3(1)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{Se} 1$	88.4(3)	C1-Fe1-Se2	161.5(3)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{Fe} 2$	102.7(3)	C1-Fe1-P1	93.7(3)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Se} 1$	147.0(3)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Se} 2$	90.8(4)
C2-Fe1-Fe2	89.8(3)	$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{P} 1$	92.6(3)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 1$	91.6(5)	$\mathrm{Se} 2-\mathrm{Fe} 2-\mathrm{Se} 1$	79.1(1)
Fe1-Fe2-Se1	58.6(1)	$\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{Se} 2$	57.2(1)
$\mathrm{C} 3-\mathrm{Fe} 2-\mathrm{Se} 1$	89.4(4)	$\mathrm{C} 3-\mathrm{Fe} 2-\mathrm{Se} 2$	152.2(3)
$\mathrm{C} 3-\mathrm{Fe} 2-\mathrm{Fe} 1$	95.1(3)	C4-Fe2-Se1	161.9(3)
$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{Se} 2$	90.5(3)	$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{Fe} 1$	103.3(3)
C4-Fe2-C3	93.3(5)	C5-Fe2-Se1	105.4(4)
$\mathrm{C} 5-\mathrm{He} 2-\mathrm{Se} 2$	111.0(3)	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{Fe} 1$	160.2(3)
$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{C} 3$	96.4(5)	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{C} 4$	92.1(5)
$\mathrm{Se} 4-\mathrm{Fe} 3-\mathrm{Se} 3$	$79.9(1)$	$\mathrm{Fe} 4-\mathrm{Fe} 3-\mathrm{Se} 3$	57.9(1)
Fe4-Fe3-Se4	58.6(1)	P2-Fe3-Se3	119.9(1)
P2-Fe3-Se4	107.1(1)	P2-Fe3-Fe4	165.4(1)
C6-Fe3-Se3	84.9(5)	C6-Fe3-Se4	158.2(5)
C6-Fe3-Fe4	100.1(4)	C6-Fe3-P2	93.9(4)
$\mathrm{C} 7-\mathrm{Fe} 3-\mathrm{Se} 3$	149.0(4)	C7-Fe3-Se4	89.4(3)
C7-Fe3-Fe4	91.6(4)	C7-Fe3-P2	91.1(4)
C7-Fe3-C6	95.8(5)	Se4-Fe4-Se3	79.4(1)
Fe3-Fe4-Se3	58.6(1)	$\mathrm{Fe} 3-\mathrm{Fe} 4-\mathrm{Se} 4$	56.9(1)
C8-Fe4-Se3	92.2(3)	$\mathrm{C} 8-\mathrm{Fe} 4-\mathrm{Se} 4$	150.8(4)
C8-Fe4-Fe3	94.8(4)	C9-Fe4-Se3	162.2(5)
C9-Fe4-Se4	88.8(4)	$\mathrm{C} 9-\mathrm{Fe} 4-\mathrm{Fe} 3$	103.8(5)
C9-Fe4-C8	91.7(4)	$\mathrm{C} 10-\mathrm{Fe} 4-\mathrm{Se} 3$	99.7(3)
$\mathrm{C} 10-\mathrm{Fe} 4-\mathrm{Se} 4$	110.3(3)	$\mathrm{C} 10-\mathrm{Fe} 4-\mathrm{Fe} 3$	155.0(3)
C10-Fe4-C8	98.6(5)	C10-Fe4-C9	96.8(5)
C19-P1-Fe1	117.3(3)	C25-P1-Fe1	112.0(2)
C25-P1-C19	103.5(3)	C31-P1-Fe1	118.0(2)
C31-P1-C19	102.0(4)	C31-P1-C25	101.9(4)
C32-P2-Fe3	113.4(4)	C33-P2-Fe3	119.1(2)
C33-P2-C32	101.7(4)	C39-P2-Fe3	114.6(2)
C39-P2-C32	103.4(3)	C39-P2-C33	102.5(3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Fe} 1$	178.4(9)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Fe} 1$	178.0(7)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{Fe} 2$	177 (1)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{Fe} 2$	178.3(9)
$\mathrm{O} 5-\mathrm{C} 5-\mathrm{Fe} 2$	170.7(9)	O6-C6-Fe3	178.2(9)
O7-C7-Fe3	178.8(9)	O8-C8-Fe4	178 (1)
O9-C9-Fe4	178 (1)	$\mathrm{O} 10-\mathrm{C} 10-\mathrm{Fe} 4$	178.3(9)
Se3-C11-Se2	112.7(3)	C12-C11-Se2	114.0(5)
C12-C11-Se3	112.5(7)	Se4-C12-Se1	113.9(5)
C11-C12-Se1	107.8(5)	C11-C12-Se4	110.5(5)
C13-C12-Sc1	107.5(4)	C13-C12-Se4	100.6(5)
C13-C12-C11	116.6(8)	C13-C14-C15	$120.0(6)$
C16-C15-C14	120.0(7)	C17-C16-C15	120.0(5)
C18-C17-C16	120.0(6)	C13-C18-C17	120.0(7)
C14-C13-C12	121.7(6)	C18-C13-C12	118.2(7)
C18-C13-C14	120.0(5)	C19-C20-C21	120.0(7)

TABLE 3 (continued)

C22-C21-C20	$120.0(6)$	C23-C22-C21	$120.0(7)$
C24-C23-C22	$120.0(7)$	C19-C24-C23	$120.0(6)$
C20-C19-P1	$120.9(6)$	C24-C19-P1	$119.0(4)$
C24-C19-C20	$120.0(7)$	C25-C26-C27	$120.0(7)$
C28-C27-C26	$120.0(6)$	C29-C28-C27	$120.0(6)$
C30-C29-C28	$120.0(7)$	C25-C30-C29	$120.0(6)$
C26-C25-P1	$120.2(6)$	C30-C25-P1	$119.8(5)$
C30-C25-C26	$120.066)$	C32-C31-P1	$114.5(5)$
C31-C32-P2	$111.2(5)$	C33-C34-C35	$120.0(4)$
C36-C35-C34	$120.0(6)$	C37-C36-C35	$120.0(6)$
C38-C37-C36	$120.0(4)$	C33-C38-C37	$120.0(6)$
C34-C33-P2	$120.9(3)$	C38-C33-P2	$119.0(6)$
C38-C33-C34	$120.0(6)$	C39-C40-C41	$120.0(5)$
C42-C41-C40	$120.0(5)$	C43-C42-C41	$120.0(6)$
C44-C43-C42	$120.0(5)$	C39-C44-C43	$120.0(5)$
C40-C39-P2	$120.3(5)$	C44-C39-P2	$119.7(5)$
C44-C39-C40	$120.0(6)$	C47-C45-C46	$55.1(1)$
C45-C46-O11	$135.5(1)$	C47-C46-O11	$102.9(1)$
C47-C46-C45	$75.8(1)$	C46-C47-C45	$49.2(1)$
O12-C49-C48	$134.8(1)$	C50-C49-C48	$109.8(1)$
C50-C49-O12	$34.8(1)$	C50-O12-C49	$87.4(1)$
O12-C50-C49	$57.8(1)$	C51-C50-C49	$128.0(1)$
C51-C50-O12	$111.9(1)$		

97-99 ${ }^{\circ}$ C. IR ($\nu, \mathrm{cm}^{-1} .2067$ (m), 2036 (vs), 1985 (s, br), 1932 (w), 1912 (W). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} ; \delta$): 69.67. Anal. Found: $\mathrm{C}, 42.6 ; \mathrm{H}, 3.31, \mathrm{C}_{55} \mathrm{H}_{42} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Se}_{4} \mathrm{Fe}_{4}$ calc.: C , 42.3 ; $\mathrm{H}, 2.90 \%$.

3.4. X-ray diffraction study of 5

A crystal of approximate dimensions $0.2 \times 0.2 \times 0.15$ mm^{3} was used for data collection.

Crystal data: $\mathrm{C}_{15} \mathrm{H}_{42} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Se}_{4} \mathrm{Fe}_{4}, M=1386.1$, triclinic, $a=12.969(1), b=13.032(1), c=18.669(1) \AA, \alpha$ $=76.78(1), \beta=72.74(2), \gamma=63.99(1)^{\circ}, V=2690.4 \AA^{3}$, space group $P 1, Z=2, D_{\mathrm{c}}=1.71 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha)$ $=37.50 \mathrm{~cm}^{-1}, F(000)=1428$. Data were measured at room temperature on a CAD4 automatic four-circle diffractometer in the range $2^{\circ}<\theta<24^{\circ} ; 7867$ reflections were collected of which 5109 were unique with $I>3 \sigma(I)$. Data were corrected for Lorentz and polarization effects and for a linear decay of 9% (based on the standard reflection intensities) during data collection. The structure was solved by Patterson methods and refined using the shelx suite of programs [7,8]. In the final least squares cycles the selenium, iron, phosphorus, oxygen atoms and carbons 45-51 were allowed to vibrate anisotropically. All other atoms were treated isotropically. Hydrogen atoms were included at calculated positions.

The crystals of 5 were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether mixtures. Advanced difference electron density maps indicated the presence of 2 solvent
moieties per asymmetric unit, which were severely disordered precluding clean refinements. Many models were assessed for each solvent entity, and the most superior fit was for 2 fragments approximating to a molecule of each acetone and diethylether per metal complex. Anisotropic thermal parameters were refined for solvent atoms (O11-12 and C45-51) although positional parameters were not, as the electron density was largely smeared and convergence was not assisted by crystal decay (quite possibly due to solvent loss) in the X-ray beam for these atoms.

Final residuals after 16 cycles of blocked least squares were $R=0.0435, R_{\mathrm{w}}=0.0492$, for a weighting scheme of $w=2.3289 /\left[\sigma^{2}(F)+0.000883(F)^{2}\right]$. Max. final shift/esd was 0.15 . The max. and min. residual densities were 0.43 and -0.29 e \AA^{-3} respectively in the solvent regions but the area proximate to the metal atoms was clean and devoid of ripples. Final fractional atomic coordinates and isotropic thermal parameters, bond distances and angles are given in Tables 1-3.

Fractional atomic coordinates for the hydrogen atoms, anisotropic thermal parameters, intermolecular distances, intramolecular distances, and the structure factor tables are available from the authors.

Acknowledgement

We are thankful to Dr. V.K. Jain for providing the ${ }^{31} \mathbf{P}$ NMR spectrum.

References

1 M.A. Esterualas, J. Herrero and L.A. Oro, Organometallics, 12 (1993) 2377; R.S. Tanke and R.H. Crabtree, J. Chem. Soc., Chem. Commun., (1990) 1056; H. Werner, U. Meyer, M.A. Esteruelas, E. Sola and L.A. Ora, J. Organomet. Chem., 366 (1989) 187; J. Espuelas, M.A. Esteruelas, F.J. Lahoz, L.A. Oro and C. Valero, Organometallics, 12 (1993) 663; A. Andriollo, M.A. Esteruelas, U. Meyer, R.A. Sanchez-Delgado, E. Sola, C. Valero and II. Werner, J. Am. Chem. Soc., 111 (1989) 7431; J.L. Templeton, Adv. Organomet. Chem., 29 (1989) 1; P.K. Baker, K.R. Flower and M.G.B. Drew, Organometallics, 12 (1993) 276.

2 A.A. Donopolous, G. Wilkinson and D.J. Wilkinson, J. Chem. Soc., Chem. Commun., (1991) 181; M.H. Chisholm and I.P. Rothwell, Comprehensive Coordination Chemistry, Vol. 2, Pergamon Press, New York 1987, Chapter 13.4; M.J. Carney, P.J. Walsh, F.J. Hollander and R.G. Bergman, Organometallics, 11 (1992) 761; C.E. Kriley, J.L. Kerschner, P.E. Fanwick and I.P. Rothwell, Organometalics, 12 (1993) 2051.
3 P. Mathur, D. Chakrabarty, Md. M. Hossain, R.S. Rashid, V. Rugmini and A.L. Rheingold, Inorg. Chem, 31 (1992) 1106; P. Mathur, Md. M. Hossain and R.S. Rashid, J. Organomet. Chem., 448 (1993) 211; P. Mathur, I.J. Mavunkal and A.L. Rheingold, J. Chem. Soc., Chem. Commun., (1989) 382; P. Mathur, I.J. Mavunkal, V. Rugmini and M.F. Mahon, Inorg. Chem., 29 (1990) 4838; P. Mathur, D. Chakrabarty, Md. M. Hossain and R.S. Rashid, J. Organomet. Chem., 420 (1991) 79.

4 P. Mathur and Md. M. Hossain, Organometallics, 12 (1993) 2398.
5 P. Mathur, Md. M. Hossain, K. Das and U.C. Sinha, J. Chem. Soc., Chem. Commun., (1993) 46.
6 V.W. Day, D.A. Lesch and T.B. Rauchfuss, J. Am. Chem. Soc., 104 (1982) 1290.

7 G.M. Sheldrick, shelx86. A Computer Program for Crystal Structure Determination, University of Gottingen, 1986.
8 G.M. Sheldrick, shelx76. A Computer Program for Crystal Structure Determination, University of Cambridge, 1976.

[^0]: Correspondence to: Dr. P. Mathur.

